Learn how you can compose a fully functional LangChain app without writing a single line of code. We demonstrate this live in this YouTube video by utilizing the latest release of our AI automation software aitom8.
You can get aitom8 here:
Auto-generated Python Code (Sample: HuggingFace Pipeline)
app.py
#!/usr/bin/env python3 # Basic libraries from dotenv import load_dotenv import os # Required for LangChain prompts and llm chains from langchain import PromptTemplate, LLMChain # Required to load the model via local HuggingFace Pipelines from huggingface.pipeline.transformer import loadModel # Alternative: # from huggingface.pipeline.parameter import loadModel # Load environment variables from .env file load_dotenv() def create_prompt(question : str, llm : str): template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm_chain = LLMChain(prompt=prompt, llm=llm) print(llm_chain.run(question)) def main(): llm = loadModel(model_id="bigscience/bloom-1b7") #llm = loadModel(model_id="OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5") create_prompt(question="What is the capital of France?", llm=llm) if __name__ == "__main__": main()
huggingface.pipeline.transformer
#!/usr/bin/env python3 # Required for Langchain HuggingFace Pipelines from langchain import HuggingFacePipeline # Required for direct HuggingFace Pipelines from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline def loadModel(model_id : str) ->any: llm = HuggingFacePipeline(pipeline=getTransformerPipeline(model_id)) return llm def getTransformerPipeline(model_id : str) ->pipeline: match model_id: case "bigscience/bloom-1b7": tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) # device_map: -1...use CPU, 0...use first GPU, ..., "auto"...use all GPUs device_map="auto" transformerPipeline = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=18, device_map=device_map ) case _: print("No pipeline available for model: " + model_id) exit() return transformerPipeline
Need further support or consulting?
Please checkout our Consulting hours.